Menu Close

Best Hadoop Training Institute in Dilsukhnagar

Hadoop Course Content

Module 1:

Introduction to Hadoop

  • High Availability
  • Scaling
  • Advantages and Challenges

Module 2: Introduction to Big Data

  • What is Big data
  • Big Data opportunities,Challenges
  • Characteristics of Big data

Module 3: Introduction to Hadoop

  • Hadoop Distributed File System
  • Comparing Hadoop & SQL
  • Industries using Hadoop
  • Data Locality
  • Hadoop Architecture
  • Map Reduce & HDFS
  • Using the Hadoop single node image (Clone)

Module 4: Hadoop Distributed File System (HDFS)

  • HDFS Design & Concepts
  • Blocks, Name nodes and Data nodes
  • HDFS High-Availability and HDFS Federation
  • Hadoop DFS The Command-Line Interface
  • Basic File System Operations
  • Anatomy of File Read,File Write
  • Block Placement Policy and Modes
  • More detailed explanation about Configuration files
  • Metadata, FS image, Edit log, Secondary Name Node and Safe Mode
  • How to add New Data Node dynamically,decommission a Data Node dynamically (Without stopping cluster)
  • FSCK Utility. (Block report)
  • How to override default configuration at system level and Programming level
  • HDFS Federation
  • ZOOKEEPER Leader Election Algorithm
  • Exercise and small use case on HDFS

Module 5: Map Reduce

  • Map Reduce Functional Programming Basics
  • Map and Reduce Basics
  • How Map Reduce Works
  • Anatomy of a Map Reduce Job Run
  • Legacy Architecture ->Job Submission, Job Initialization, Task Assignment, Task Execution, Progress and Status Updates
  • Job Completion, Failures
  • Shuffling and Sorting
  • Splits, Record reader, Partition, Types of partitions & Combiner
  • Optimization Techniques -> Speculative Execution, JVM Reuse and No. Slots
  • Types of Schedulers and Counters
  • Comparisons between Old and New API at code and Architecture Level
  • Getting the data from RDBMS into HDFS using Custom data types
  • Distributed Cache and Hadoop Streaming (Python, Ruby and R)
  • YARN
  • Sequential Files and Map Files
  • Enabling Compression Codec’s
  • Map side Join with distributed Cache
  • Types of I/O Formats: Multiple outputs, NLINEinputformat
  • Handling small files using CombineFileInputFormat

Module 6: Map Reduce Programming 

  • Job Dependency API discussion
  • Input Format API discussion,Split API discussion
  • Custom Data type creation in Hadoop

Module 7: NOSQL

  • ACID in RDBMS and BASE in NoSQL
  • CAP Theorem and Types of Consistency
  • Types of NoSQL Databases in detail
  • Columnar Databases in Detail (HBASE and CASSANDRA)
  • TTL, Bloom Filters and Compensation

 Module 8: HBase

  • HBase Installation, Concepts
  • HBase Data Model and Comparison between RDBMS and NOSQL
  • Master & Region Servers
  • HBase Operations (DDL and DML) through Shell and Programming and HBase Architecture
  • Catalog Tables
  • Block Cache and sharding
  • SPLITS
  • DATA Modeling (Sequential, Salted, Promoted and Random Keys)
  • Java API’s and Rest Interface
  • Client Side Buffering and Process 1 million records using Client side Buffering
  • HBase Counters
  • Enabling Replication and HBase RAW Scans
  • HBase Filters
  • Bulk Loading and Co processors (Endpoints and Observers with programs)
  • Real world use case consisting of HDFS,MR and HBASE

Module 9: Hive

  • Hive Installation, Introduction and Architecture
  • Hive Services, Hive Shell, Hive Server and Hive Web Interface (HWI)
  • Meta store, Hive QL
  • OLTP vs. OLAP
  • Working with Tables
  • Primitive data types and complex data types
  • Working with Partitions
  • User Defined Functions
  • Hive Bucketed Tables and Sampling
  • External partitioned tables, Map the data to the partition in the table, Writing the output of one query to another table, Multiple inserts
  • Dynamic Partition
  • Differences between ORDER BY, DISTRIBUTE BY and SORT BY
  • Bucketing and Sorted Bucketing with Dynamic partition
  • RC File
  • INDEXES and VIEWS
  • MAPSIDE JOINS
  • Compression on hive tables and Migrating Hive tables
  • Dynamic substation of Hive and Different ways of running Hive
  • How to enable Update in HIVE
  • Log Analysis on Hive
  • Access HBASE tables using Hive
  • Hands on Exercises

Module 10: Pig

  • Pig Installation
  • Execution Types
  • Grunt Shell
  • Pig Latin
  • Data Processing
  • Schema on read
  • Primitive data types and complex data types
  • Tuple schema, BAG Schema and MAP Schema
  • Loading and Storing
  • Filtering, Grouping and Joining
  • Debugging commands (Illustrate and Explain)
  • Validations,Type casting in PIG
  • Working with Functions
  • User Defined Functions
  • Types of JOINS in pig and Replicated Join in detail
  • SPLITS and Multiquery execution
  • Error Handling, FLATTEN and ORDER BY
  • Parameter Substitution
  • Nested For Each
  • User Defined Functions, Dynamic Invokers and Macros
  • How to access HBASE using PIG, Load and Write JSON DATA using PIG
  • Piggy Bank
  • Hands on Exercises

Module 11: SQOOP

  • Sqoop Installation
  • Import Data.(Full table, Only Subset, Target Directory, 
  • Export data to RDBMS,HIVE and HBASE
  • Hands on Exercises

Module 12: HCatalog

  • HCatalog Installation
  • Introduction to HCatalog
  • About Hcatalog with PIG,HIVE and MR
  • Hands on Exercises

Module 13: Flume

  • Flume Installation
  • Introduction to Flume
  • Flume Agents. Do some analysis using HIVE and PIG

Module 14: More Ecosystems

  • HUE.(Hortonworks and Cloudera)

Module 15: Oozie

  • Workflow (Action, Start, Action, End, Kill, Join and Fork), Schedulers, Coordinators and Bundles.,to show how to schedule Sqoop Job, Hive, MR and PIG
  • Real world Use case which will find the top websites used by users of certain ages and will be scheduled to run for every one hour
  • Zoo Keeper
  • HBASE Integration with HIVE and PIG
  • Phoenix
  • Proof of concept (POC)

Module 16: SPARK

  • Spark Overview
  • Linking with Spark, Initializing Spark
  • Using the Shell
  • Resilient Distributed Datasets (RDDs)
  • Parallelized Collections
  • External Datasets
  • RDD Operations
  • Basics, Passing Functions to Spark
  • Working with Key-Value Pairs
  • Transformations
  • Actions
  • RDD Persistence
  • Which Storage Level to Choose?
  • Removing Data
  • Shared Variables
  • Broadcast Variables
  • Accumulators
  • Deploying to a Cluster
  • Unit Testing
  • Migrating from pre-1.0 Versions of Spark
  • Where to Go from Her

Register for Hadoop training today! Questions? Contact us at  +91 7995920133